Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1271219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881249

RESUMO

Changing atmospheric composition represents a source of uncertainty in our assessment of future disease risks, particularly in the context of mycotoxin producing fungal pathogens which are predicted to be more problematic with climate change. To address this uncertainty, we profiled microbiomes associated with wheat plants grown under ambient vs. elevated atmospheric carbon dioxide concentration [CO2] in a field setting over 2 years. We also compared the dynamics of naturally infecting versus artificially introduced Fusarium spp. We found that the well-known temporal dynamics of plant-associated microbiomes were affected by [CO2]. The abundances of many amplicon sequence variants significantly differed in response to [CO2], often in an interactive manner with date of sample collection or with tissue type. In addition, we found evidence that two strains within Fusarium - an important group of mycotoxin producing fungal pathogens of plants - responded to changes in [CO2]. The two sequence variants mapped to different phylogenetic subgroups within the genus Fusarium, and had differential [CO2] responses. This work informs our understanding of how plant-associated microbiomes and pathogens may respond to changing atmospheric compositions.

2.
Microb Ecol ; 84(1): 122-130, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34405252

RESUMO

Microbial communities, like their macro-organismal counterparts, assemble from multiple source populations and by processes acting at multiple spatial scales. However, the relative importance of different sources to the plant microbiome and the spatial scale at which assembly occurs remains debated. In this study, we analyzed how source contributions to the foliar fungal microbiome of a C4 grass differed between locally abundant plants and soils across an abiotic gradient at different spatial scales. Specifically, we used source-sink analysis to assess the likelihood that fungi in leaves from Panicum hallii came from three putative sources: two plant functional groups (C4 grasses and dicots) and soil. We expected that physiologically similar C4 grasses would be more important sources to P. hallii than dicots. We tested this at ten sites in central Texas spanning a steep precipitation gradient. We also examined source contributions at three spatial scales: individual sites (local), local plus adjacent sites (regional), or all sites (gradient-wide). We found that plants were substantially more important sources than soils, but contributions from the two plant functional groups were similar. Plant contributions overall declined and unexplained variation increased as mean annual precipitation increased. This source-sink analysis, combined with partitioning of beta-diversity into nestedness and turnover components, indicated high dispersal limitation and/or strong environmental filtering. Overall, our results suggest that the source-sink dynamics of foliar fungi are primarily local, that foliar fungi spread from plant-to-plant, and that the abiotic environment may affect fungal community sourcing both directly and via changes to host plant communities.


Assuntos
Micobioma , Panicum , Biodiversidade , Fungos/fisiologia , Plantas/microbiologia , Solo
3.
Plant Dis ; 106(6): 1597-1609, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34907805

RESUMO

Accurate species-level identification of an etiological agent is crucial for disease diagnosis and management because knowing the agent's identity connects it with what is known about its host range, geographic distribution, and toxin production potential. This is particularly true in publishing peer-reviewed disease reports, where imprecise and/or incorrect identifications weaken the public knowledge base. This can be a daunting task for phytopathologists and other applied biologists that need to identify Fusarium in particular, because published and ongoing multilocus molecular systematic studies have highlighted several confounding issues. Paramount among these are: (i) this agriculturally and clinically important genus is currently estimated to comprise more than 400 phylogenetically distinct species (i.e., phylospecies), with more than 80% of these discovered within the past 25 years; (ii) approximately one-third of the phylospecies have not been formally described; (iii) morphology alone is inadequate to distinguish most of these species from one another; and (iv) the current rapid discovery of novel fusaria from pathogen surveys and accompanying impact on the taxonomic landscape is expected to continue well into the foreseeable future. To address the critical need for accurate pathogen identification, our research groups are focused on populating two web-accessible databases (FUSARIUM-ID v.3.0 and the nonredundant National Center for Biotechnology Information nucleotide collection that includes GenBank) with portions of three phylogenetically informative genes (i.e., TEF1, RPB1, and RPB2) that resolve at or near the species level in every Fusarium species. The objectives of this Special Report, and its companion in this issue (Torres-Cruz et al. 2022), are to provide a progress report on our efforts to populate these databases and to outline a set of best practices for DNA sequence-based identification of fusaria.


Assuntos
Fusarium , Sequência de Bases , Fusarium/genética , Filogenia
4.
Plant Dis ; 106(6): 1610-1616, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34879732

RESUMO

Species within Fusarium are of global agricultural, medical, and food/feed safety concern and have been extensively characterized. However, accurate identification of species is challenging and usually requires DNA sequence data. FUSARIUM-ID (http://isolate.fusariumdb.org/blast.php) is a publicly available database designed to support the identification of Fusarium species using sequences of multiple phylogenetically informative loci, especially the highly informative ∼680-bp 5' portion of the translation elongation factor 1-alpha (TEF1) gene that has been adopted as the primary barcoding locus in the genus. However, FUSARIUM-ID v.1.0 and 2.0 had several limitations, including inconsistent metadata annotation for the archived sequences and poor representation of some species complexes and marker loci. Here, we present FUSARIUM-ID v.3.0, which provides the following improvements: (i) additional and updated annotation of metadata for isolates associated with each sequence, (ii) expanded taxon representation in the TEF1 sequence database, (iii) availability of the sequence database as a downloadable file to enable local BLAST queries, and (iv) a tutorial file for users to perform local BLAST searches using either freely available software, such as SequenceServer, BLAST+ executable in the command line, and Galaxy, or the proprietary Geneious software. FUSARIUM-ID will be updated on a regular basis by archiving sequences of TEF1 and other loci from newly identified species and greater in-depth sampling of currently recognized species.


Assuntos
Fusarium , DNA Fúngico/genética , Fusarium/genética , Filogenia
5.
Toxins (Basel) ; 15(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36668832

RESUMO

Fusarium trichothecenes are among the mycotoxins of most concern to food and feed safety. Production of these mycotoxins and presence of the trichothecene biosynthetic gene (TRI) cluster have been confirmed in only two multispecies lineages of Fusarium: the Fusarium incarnatum-equiseti (Incarnatum) and F. sambucinum (Sambucinum) species complexes. Here, we identified and characterized a TRI cluster in a species that has not been formally described and is represented by Fusarium sp. NRRL 66739. This fungus is reported to be a member of a third Fusarium lineage: the F. buharicum species complex. Cultures of NRRL 66739 accumulated only two trichothecenes, 7-hydroxyisotrichodermin and 7-hydroxyisotrichodermol. Although these are not novel trichothecenes, the production profile of NRRL 66739 is novel, because in previous reports 7-hydroxyisotrichodermin and 7-hydroxyisotrichodermol were components of mixtures of 6-8 trichothecenes produced by several Fusarium species in Sambucinum. Heterologous expression analysis indicated that the TRI13 gene in NRRL 66739 confers trichothecene 7-hydroxylation. This contrasts the trichothecene 4-hydroxylation function of TRI13 in other Fusarium species. Phylogenetic analyses suggest that NRRL 66739 acquired the TRI cluster via horizontal gene transfer from a close relative of Incarnatum and Sambucinum. These findings provide insights into evolutionary processes that have shaped the distribution of trichothecene production among Fusarium species and the structural diversity of the toxins.


Assuntos
Fusarium , Micotoxinas , Tricotecenos , Filogenia , Fusarium/metabolismo , Transferência Genética Horizontal , Tricotecenos/metabolismo , Micotoxinas/química , Fenótipo
6.
Ecology ; 102(12): e03557, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34625950

RESUMO

The plant soil feedback (PSF) framework has been instrumental in understanding the impacts of soil microbes on plant fitness and species coexistence. PSFs develop when soil microbial communities are altered due to the identity and density of a particular plant species, which can then enhance or inhibit the local survival and growth of that plant species as well as different plant species. The recent extension of the PSF framework to aboveground microbiota, termed here as plant phyllosphere feedbacks (PPFs), can also help to determine the impact of aboveground microbes on plant fitness and species interactions. However, experimental tests of PPFs during early plant growth are nascent and the prevalence of PPFs across diverse plant species remains unknown. Additionally, it is unclear whether plant host characteristics, such as functional traits or phylogenetic distance, may help to predict the strength and direction of PPFs. To test for the prevalence of litter-mediated PPFs, recently senesced plant litter from 10 native Asteraceae species spanning a range of life history strategies was used to inoculate seedlings of both conspecific and heterospecific species. We found that exposure to conspecific litter significantly reduced the growth of four species relative to exposure to heterospecific litter (i.e., significant negative PPFs), three species experienced marginally significant negative PPFs, and the PPF estimates for all 10 species were negative. However, neither plant functional traits, nor phylogenetic distance were predictive of litter feedbacks across plant species pairs, suggesting that other mechanisms or traits not measured may be driving conspecific negative PPFs. Our results indicate that negative, litter-mediated PPFs are common among native Asteraceae species and that they may have substantial impacts on plant growth and plant species interactions, particularly during early plant growth.


Assuntos
Asteraceae , Plântula , Retroalimentação , Filogenia , Folhas de Planta , Solo
7.
Ecol Evol ; 10(24): 13895-13912, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33391689

RESUMO

Phylogenetic distance among host species represents a proxy for host traits that act as biotic filters to shape host-associated microbiome community structure. However, teasing apart potential biotic assembly mechanisms, such as host specificity or local species interactions, from abiotic factors, such as environmental specificity or dispersal barriers, in hyperdiverse, horizontally transmitted microbiomes remains a challenge. In this study, we tested whether host phylogenetic relatedness among 18 native Asteraceae plant species and spatial distance between replicated plots in a common garden affects foliar fungal endophyte (FFE) community structure. We found that FFE community structure varied significantly among host species, as well as host tribes, but not among host subfamilies. However, FFE community dissimilarity between host individuals was not significantly correlated with phylogenetic distance between host species. There was a significant effect of spatial distance among host individuals on FFE community dissimilarity within the common garden. The significant differences in FFE community structure among host species, but lack of a significant host phylogenetic effect, suggest functional differences among host species not accounted for by host phylogenetic distance, such as metabolic traits or phenology, may drive FFE community dissimilarity. Overall, our results indicate that host species identity and the spatial distance between plants can determine the similarity of their microbiomes, even across a single experimental field, but that host phylogeny is not closely tied to FFE community divergence in native Asteraceae.

9.
FEMS Microbiol Ecol ; 95(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561602

RESUMO

Endophytic microbiota are potentially useful plant symbionts for conferring biotic or abiotic stress tolerance. Common approaches to identify putatively beneficial functions of endophytes rely on lab-based assays. However, if functional roles are context-dependent, lab-based assessments may not accurately represent functional outcomes under variable field conditions. Our objective was to test whether antagonism by bacterial endophytes towards a plant pathogen in vitro would be predictive of disease outcomes in live plant tissue. We challenged Fusarium graminearum, a fungal pathogen of wheat, against bacterial endophytes isolated from wheat plants in two in vitro assays. A subset of isolates, with in vitro antagonistic activity ranging from weak to strong, was selected for testing in live plant tissue (detached wheat heads). Assays were performed under different temperature and/or carbon dioxide conditions to test environmental dependency in the plant-endophyte-pathogen interactions. The two in vitro assays produced contrasting measures of pathogen inhibition, and neither predicted pathogen load reductions in the detached wheat head assay. Additionally, outcomes were environment-dependent and varied among bacterial isolates. Thus, endophytic impacts on plant performance cannot be easily inferred from simplified in vitro assays, and environmental gradients should be incorporated into future testing of microbial interactions in plant hosts.


Assuntos
Antibiose/fisiologia , Agentes de Controle Biológico/metabolismo , Endófitos/metabolismo , Fusarium/crescimento & desenvolvimento , Triticum/microbiologia , Microbiota , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
10.
Ecology ; 99(12): 2703-2711, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30367461

RESUMO

Experimental tests of community assembly mechanisms for host-associated microbiomes in nature are lacking. Asymptomatic foliar fungal endophytes are a major component of the plant microbiome and are increasingly recognized for their impacts on plant performance, including pathogen defense, hormonal manipulation, and drought tolerance. However, it remains unclear whether fungal endophytes preferentially colonize certain host ecotypes or genotypes, reflecting some degree of biotic adaptation in the symbioses, or whether colonization is simply a function of spore type and abundance within the local environment. Whether host ecotype, local environment, or some combination of both controls the pattern of microbiome formation across hosts represents a new dimension to the age-old debate of nature versus nurture. Here, we used a reciprocal transplant design to explore the extent of host specificity and biotic adaptation in the plant microbiome, as evidenced by differential colonization of host genetic types by endophytes. Specifically, replicate plants from three locally-adapted ecotypes of the native grass Panicum virgatum (switchgrass) were transplanted at three geographically distinct field sites (one home and two away) in the Midwestern US. At the end of the growing season, plant leaves were harvested and the fungal microbiome characterized using culture-dependent sequencing techniques. Our results demonstrated that fungal endophyte community structure was determined by local environment (i.e., site), but not by host ecotype. Fungal richness and diversity also strongly differed by site, with lower fungal diversity at a riparian field site, whereas host ecotype had no effect. By contrast, there were significant differences in plant phenotypes across all ecotypes and sites, indicating ecotypic differentiation of host phenotype. Overall, our results indicate that environmental factors are the primary drivers of community structure in the switchgrass fungal microbiome.


Assuntos
Micobioma , Panicum , Ecótipo , Endófitos , Genótipo
11.
Ecol Lett ; 20(8): 1064-1073, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28677329

RESUMO

Over the past 25 years, the plant-soil feedback (PSF) framework has catalyzed our understanding of how belowground microbiota impact plant fitness and species coexistence. Here, we apply a novel extension of this framework to microbiota associated with aboveground tissues, termed 'plant-phyllosphere feedback (PPFs)'. In parallel greenhouse experiments, rhizosphere and phyllosphere microbiota of con- and heterospecific hosts from four species were independently manipulated. In a third experiment, we tested the combined effects of soil and phyllosphere feedback under field conditions. We found that three of four species experienced weak negative PSF whereas, in contrast, all four species experienced strong negative PPFs. Field-based feedback estimates were highly negative for all four species, though variable in magnitude. Our results suggest that phyllosphere microbiota, like rhizosphere microbiota, can potentially mediate plant species coexistence via negative feedbacks. Extension of the PSF framework to the phyllosphere is needed to more fully elucidate plant-microbiota interactions.


Assuntos
Asteraceae , Microbiologia do Solo , Retroalimentação , Rizosfera , Solo
12.
Front Microbiol ; 6: 869, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441846

RESUMO

The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration). The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.

13.
New Phytol ; 207(3): 760-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25782030

RESUMO

Nutrient limitation is a basic ecological constraint that has received little attention in studies on virus production and disease dynamics. Nutrient availability could directly limit the production of viral nucleic acids and proteins, or alternatively limit host growth and thus indirectly limit metabolic pathways necessary for viral replication. In order to compare direct and indirect effects of nutrient limitation on virus production within hosts, we manipulated soil nitrogen (N) and phosphorus (P) availability in a glasshouse for the wild grass host Bromus hordeaceus and the viral pathogen Barley yellow dwarf virus-PAV. We found that soil N additions increased viral concentrations within host tissues, and the effect was mediated by host growth. Specifically, in statistical models evaluating the roles of host biomass production, leaf N and leaf P, viral production depended most strongly on host biomass, rather than the concentration of either nutrient. Furthermore, at low soil N, larger plants supported greater viral concentrations than smaller ones, whereas at high N, smaller plants supported greater viral concentrations. Our results suggest that enhanced viral productivity under N enrichment is an indirect consequence of nutrient stimulation to host growth rate. Heightened pathogen production in plants has important implications for a world facing increasing rates of nutrient deposition.


Assuntos
Bromus/crescimento & desenvolvimento , Bromus/virologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Luteovirus/crescimento & desenvolvimento , Nitrogênio/farmacologia , Solo/química , Biomassa , Bromus/efeitos dos fármacos , Luteovirus/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/virologia , Carga Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...